A MCA-I Semister Question papers & (App - 2021) H.T.No: 20 A 9 1 F 0 0 5 3 Course Code: 203MC1T02 ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular (AR20) – AUG 2021 ### MATHEMATICAL AND STATISTICAL FOUNDATIONS Time: 3 hours correct. Max. Marks: 70 Answer ONE question from each unit All Questions Carry Equal Marks (5 x 14 = 70M) All parts of the questions must be answered at one place only #### UNIT - I - a State Bayes theorem. A and B are two weak students of statistics and K2 CO1 [7M] their chance of solving a problem in statistics correctly are $\frac{1}{6}$ and $\frac{1}{8}$ respectively. If the probability of their making a common error is $\frac{1}{525}$ and they obtain same answer, find the probability that their answer is - b Describe Acceptable and Natural assignment probabilities. For any two K2 CO1 [7M] events A and B, Prove that - i) $P(\overline{A} \cap B) = P(B) P(A \cap B)$ ii) $P(A \cap \overline{B}) = P(A) P(A \cap B)$ #### OR - 2 a Explain what is meant by random variable. Compare discrete and K2 CO1 [6M] continuous random variables. - b The diameter (x) of an electric cable, is assumed to be a continuous K3 CO1 [8M] random variable with p.d.f.: f(x) = 6x(1-x), 0≤x≤1. i) Check that the given f(x) is a p.d.f. ii) Obtain an expression for the - c.d.f. of x iii) Compute $P(\frac{1}{3} \le x \le \frac{2}{3})$ and iv) determine the number of k ## such that P(x < k) = P(x > k) #### UNIT - II - a Briefly explain how to select random samples from the population using K3 CO2 [6M] simple random sampling with and without replacement. - b For a frequency distribution of scores in mathematics of 50 candidates K3 CO2 [8M] selected at random from a certain examination. Compute mean and variance using the moments. | Scores | 5-10 | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | |-----------|------|-------|-------|-------|-------|-------|-------| | Frequency | 6 | 8 | 17 | 21 | 15 | 11 | 2 | (P.T.O) | | 0 | R | |--|---|---| |--|---|---| CO₂ [6M] - Explain briefly the criteria of good estimator. - Define the likelihood function of a random sample of size n. Obtain the maximum likelihood estimate of the parameter α of a population having the density function: $f(x) = \frac{2}{\alpha^2}(\alpha - x)$, $0 < x < \alpha$ for a sample of unit size is 2x. CO₂ [8M] K3 ## UŅIT – III - CO3 [6M] Explain i) Null and Alternative hypothesis ii) One tailed and two tailed K3 CO3 [8M] - The hourly wage of a sample of 150 workers in a plant 'A' was Rs. 2.56 with a standard deviation of Rs. 1.08. The hourly wage of a sample of 200 workers in a plant 'B' was Rs. 2.87 with a standard deviation of Rs. 1.28. Can an applicant safely assume that the hourly wages paid by plant 'B' are higher than those paid by plant 'A'. [7M] CO₃ K3 - 6 Discuss how to construct i) X chart ii) R chart - CO₃ [7M] A survey of 800 families with four children each revealed the following K3 distribution: | No. of Boys | 0 | 1 | 2 | 3 | 4 | |-----------------|----|-----|-----|-----|----| | No. of Girls | 4 | .3 | 2 | 1 | 0 | | No. of families | 32 | 178 | 290 | 236 | 64 | Is this result with the hypothesis that male and female births are equally probable? ## UNIT – IV - Let (A,\cdot) be a group i) show that $(ab)^{-1} = b^{-1}a^{-1}$ ii) Show that K2 CO4 [7M] $(a_1, a_2, \dots, a_r)^{-1} = a_r^{-1} a_{r-1}^{-1} \dots a_2^{-1}, a_1^{-1}$ - If $p_1, p_2, \dots p_n$ are relatively prime to q then their product is K2 CO4 relatively prime to q. #### OR - Write a division algorithm and find the quotient remainder when K2 8 i) 777 is divisible by 21 ii) 1234567 is divisible by 1001 - Express the gcd of each pair of integers as a linear combination of these K2 CO4 integers i) 33, 44 ii) 101, 203 UNIT - V [6M]K3 CO5 Describe different kinds of Graph models. [8M] Write Prim's algorithm to find a minimum spanning tree and hence find K3 CO5 the minimum spanning tree of the following graph. OR a Construct a precedence graph for the following program: $S_1: x := 0, \ S_2: x := x+1, \ S_3: y := 2, \ S_4: z := y, \ S_5: x := x+2$ $S_6: y := x + z , S_7: z := 4$ b. Find the adjacency matrix for the following graphs i) K_n ii) $K_{m,n}$ K3 CO5 [7M] **** H.T.No: Course Code: 203MC1T01 # ADITYA ENGINEERING COLLEGE (A) MCA – 1 Semester End Examinations Regular (AR20) – AUG 2021 ## **BUSINES COMMUNICATION** Max. Marks: 70 Time: 3 hours > Answer ONE question from each unit All Questions Carry Equal Marks ($5 \times 14 = 70 \text{M}$) All parts of the questions must be answered at one place only | UN | IT – | I | | | | |-----|--------|--|----------|-----------------|---------------------| | 1 | a | What are the essentials of good communication? | | COI | [7M] | | | b | Explain the channels of communication? | K2 | COI | [7M] | | 2/ | | OR | K1 | CO2 | [7M] | | 1 | a
b | What is formal and informal communication? What role does communication play in business? | K1 | CO2 | [7M] | | | Ü | What fold does communication play in dusiness. | | 002 | [] | | UN | IT - | ·II | | | | | 3 | a | What are the factors affecting presentations? | Κl | CO ₅ | [7M] | | | b | How can presentations be made effective? | K2 | CO ₅ | [7M] | | 1/ | | OR Evaloin role of emotion in international communication | V2 | CO2 | [7] (] | | 24 | a
b | Explain role of emotion in interpersonal communication Briefly explain effective interpersonal communication | K2
K2 | CO2
CO2 | [7M] | | | U | Briefly explain effective interpersonal communication | K2 | COZ | [7M] | | UN | IT - | - III | | | | | 5 | a | What are the characteristics of non -verbal communication? | K1 | COI | [7M] | | | b | Explain the difference between formal & informal communications? | Κl | CO3 | [7M] | | | | OR | 435 | | [] | | 6 | a | What do you mean by etiquette? How they are important in business? | KI | CO3 | [7M] | | | b | Give suitable examples for some business etiquettes, which are essentials | K2 | CO3 | [7M] | | | | in business dealings? | | 1 | | | UN | IT_ | . IV | | J. | | | 7 | a | Discuss the different forms of internal correspondence? | K2 | CO4 | [7M] | | | b | What role does a resume plays for a job applicant? | K1 | CO4 | [7M] | | | | OR | | 901 | [////] | | 8 | a | Discuss the important considerations in preparing a resume? | K2 | CO4 | [7M] | | | p. | What do you mean by a report? Discuss various types and structures of | K1 | CQ4 | [7M] | | | | reports? | | Š | - | | TIN | IT - | V | | | | | 9 | a - | | *** | ~~. | (m) (1) | | | | What is an interview? What aspects interviewers assess when they interview candidates? | ΚI | COS | [7M] | | | b | What are the characteristics of a prerequisites of effective presentation? | V I | CO5 | $\Gamma T M \Omega$ | | | | OR | ΝI | COS | [\tvr] | | 10 | a | Elaborate some of presentation skills and how they contribute to effective | КЭ | COS | [7](1) | | | | presentations? | KΖ | COS | Livi | | | b | Briefly explain techniques involved in interviews? | K2 | COS | [7\A] | | | | | | | | 2049140053 H.T.No: Course Code: 203MC1T03 # ADITYA ENGINEERING COLLEGE (A) MCA – 1 Semester End Examinations Regular (AR20) – AUG 2021 ## COMPUTER ORGANIZATION & OPERATING SYSTEMS Max. Marks: 70 Time: 3 hours Answer ONE question from each unit All Questions Carry Equal Marks (5 x 14 = 70M) All parts of the questions must be answered at one place only | UN | IT - | - I | 1/2 | CO1 | [7M] | |----|------|---|------|-----|---------| | 1 | a | Explain How to measure the performance of a computer? | K2 | COL | • | | | b | What are operational steps needed to execute any machine instruction? | K1 | COI | [7M] | | | | OR | 1/0 | 001 | [7] [7] | | 2 | a | Explain about stacks and Queues Basic Input/output Operations | K2 | COI | [7M] | | | b | List out the different addressing modes and discuss with examples. | K2 | CO1 | [7M] | | | | | | | | | UN | IT - | | 1// | 002 | (7).41 | | 3 | a | Explain about the organization of a micro programmed control unit. | K2 | CO2 | [7M] | | | b | What are the steps involved in execution of a complete instruction? Write | K1 | CO2 | [7M] | | | | the control sequence for execution of the instruction MOV instruct. | | | | | | | OR | 77.4 | 000 | (7) (1 | | 4 | a | Difference between RAM and ROM. | K4 | | [7M] | | | b | What are the differences between single bus organization and multiple | K4 | CO2 | [7M] | | | | bus organization? | | | | | | | | | | | | UN | IT - | - III | W2 | CO2 | [7] (] | | 5 | a | Explain about operating system Services. | K2 | CO3 | [7M] | | | b | Explain about real-time operating system. | K2 | CO3 | [7M] | | | | OR | V 1 | CO2 | [7] (] | | 6 | a | Define PCB. Explain about PCB with neat diagram | K1 | CO3 | [7M] | | | b | What is Thread? Explain about threading issues. | K1 | CO3 | [7M] | | | | | | | | | UN | IT - | - IV | 17.1 | 004 | [7] (] | | 7 | a | Write short notes on Critical-Section. | Kl | CO4 | [7M] | | | b | Define Semaphores. Explain about different types of Semaphores. | K1 | CO4 | [7M] | | | | OR | 17.1 | 004 | (7) (7 | | 8 | a | Define Deadlock. Write about Deadlock characteristics. | K1 | CO4 | [7M] | | | b ; | Explain about Deadlock prevention. | K2 | CO4 | [7M] | | | | | | | | | UN | IT - | | *** | 005 | (7) (1 | | 9 | a | Explain about file access methods. | K2 | CO5 | [7M] | | | b | What is memory allocation? Explain about Contiguous Memory | Κl | CO5 | [7M] | | | | Allocation. | | | | | | | OR | | | ra: 0 | | 10 | a | What is file mounting? Explain about File-mounting with example. | K1 | CO5 | [7M] | | | b | Define Seek Time. Explain about FCFS disk Scheduling Algorithm. | Κl | CO5 | [7M] | | H.T.No: | | | | | | | Course Code: 203MC1T0 | 04 | |-----------|------|--|---|---|---|--|-----------------------|----| | T. I.IVO. |
 | | ı | 1 | 1 | | | | ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End
Examinations Regular (AR20) – AUG 2021 | | | · · · · · · · · · · · · · · · · · · · | | | | | |-----|------|--|---------|-----|------|--------| | | | DATA STRUCTURES | | | | | | | | Time: 3 hours Ma | ax. Ma | rks | : 70 | | | | | Answer ONE question from each unit | | | | | | | | All Questions Carry Equal Marks (5 x 14 = 70M) | 1 | | | | | | | All parts of the questions must be answered at one place | only | | | - | | TI | NIT | _T | | | | | | 1 | a | Explain arithmetic, logical and bitwise operators with examples. | K | 2 | COI | [6M] | | | b | Write a C program to illustrate switch and if-else statements. | K | 2 | CO1 | [8M] | | | | OR | | _ | | | | 2 | a | What is the need of do-while and while loops? Discuss about their usa Distinguish between them. | J | | COI | [6M] | | | ь | Write a program to demonstrate passing an array argument to a function Consider the problem of finding largest of N numbers defined in array. | | .2 | COI | [8M] | | UN | TI | - II | | | | | | 3 | a | Explain function prototype and explain different methods to call functions. | the K | 3 | CO2 | [7M] | | | b | Define a structure. Describe how to declare and initialize structure and members with an example. | its K | .3 | CO2 | [7M] | | | | OR | | | | | | A | a | What is a user defined function? When these functions are useful? How function is declared and what are the rules followed to call a function. | wa K | [3 | CO2 | [6M] | | | b | Explain about the fopen, fclose, feof, fprintf, and fscanf, functions. | K | (3 | CO2 | [8M] | | UN | IT – | · III | | | | | | 5 | a | List various operations of linked list and explain how to insert a no
anywhere in the single linked list. | | | | [8M] | | | b | Write an algorithm to delete an element anywhere from doubly link list. | ked K | (3 | CO3 | [6M] | | | • | OR | | | | | | 6 | a | Explain the advantages and disadvantages of the recursive algorithcompared to non-recursive algorithms. | | | | | | | b | What is the difference between Circular linked list and doubly linked Mention the applications of each type of list. | list. K | ζ3 | CO3 | [8M] | | TIN | IT – | TV | | | | | | 7 | a - | Convert given Infix expression: $(a + b * c ^ d) * (e + f / g)$ to Pos expression using Stack and show the details of Stack at each step | tfix I | ζ3 | CO4 | [7M] | | | b | conversion. (Note: ^ indicates exponent operator) Discuss various collision resolution techniques with suitable examples | | 70 | CO4 | [7N.1] | | | U | Discuss various comision resolution techniques with suitable examples | . r | 73 | 004 | [7M] | | | | | | | (P. | T.O) | | 18 | a
b | OR Explain the basic operations of stack with pseudo code. Discuss about implementation of queues using linked list. | K3
K3 | CO4
CO4 | [8M]
[6M] | |-----|------------|---|---|---|---| | UN | | | | | | | رور | a | Describe insertion sort algorithm and trace the steps of insertion sort for sorting the list 12, 19, 33, 26, 29, 35, 22, 37. Find the total number of | K4 | CO5 | [6M] | | | b | Write in-order, pre-order and post-order traversal of a binary tree. | K4 | CO5 | [M8] | | 10 | | OR | | | | | 10 | a | Create binary search tree for the following elements 23, 12, 45, 36, 5, 15, 39, 2, 19. Discuss about the height of the above binary search tree | K4 | CO5 | [7M] | | | b | Give an algorithm for quick sort and explain its time complexity. Trace | K4 | CO5 | [7M] | | | | | | | | | | <i>J</i> 8 | UNIT a b | B a Explain the basic operations of stack with pseudo code. Discuss about implementation of queues using linked list. UNIT - V a Describe insertion sort algorithm and trace the steps of insertion sort for sorting the list 12, 19, 33, 26, 29, 35, 22, 37. Find the total number of comparisons made. b Write in-order, pre-order and post-order traversal of a binary tree. OR 10 a Create binary search tree for the following elements 23, 12, 45, 36, 5, 15, 39, 2, 19. Discuss about the height of the above binary search tree. b Give an algorithm for quick sort and explain its time complexity. Trace the algorithm for the following data: 65 70 75 80 85 60 55 50 45. | Be a Explain the basic operations of stack with pseudo code. Discuss about implementation of queues using linked list. WNIT - V Describe insertion sort algorithm and trace the steps of insertion sort for sorting the list 12, 19, 33, 26, 29, 35, 22, 37. Find the total number of comparisons made. Write in-order, pre-order and post-order traversal of a binary tree. OR Create binary search tree for the following elements 23, 12, 45, 36, 5, 15, K4 39, 2, 19. Discuss about the height of the above binary search tree. Give an algorithm for quick sort and explain its time complexity. Trace K4 | a Explain the basic operations of stack with pseudo code. b Discuss about implementation of queues using linked list. UNIT - V a Describe insertion sort algorithm and trace the steps of insertion sort for sorting the list 12, 19, 33, 26, 29, 35, 22, 37. Find the total number of comparisons made. b Write in-order, pre-order and post-order traversal of a binary tree. OR Create binary search tree for the following elements 23, 12, 45, 36, 5, 15, 39, 2, 19. Discuss about the height of the above binary search tree. b Give an algorithm for quick sort and explain its time complexity. Trace the algorithm for the following data: 65 70 75 80 85 60 55 50 45. | | | Course Code: 203MC1T05 | |---------|------------------------| | H.T.No: | COLLECT (V) | # ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular (AR20) – AUG 2021 ## OBJECT ORIENTED PROGRAMMING WITH JAVA | Time: 3 hours Answer ONE question from each unit All Questions Carry Equal Marks (5 x 14 = 70M) All parts of the questions must be answered at one place only | |
---|------------| | Count Equal Marks (5 x 14 = 7012) | | | the guestions must be answered at one place | | | All parts of the questions man be and | | | UNIT - I 1 a Explain the different parts of a Java program with an appropriate K2 CO1 [7M] | | | example. b What is meant by byte code? Briefly explain how Java is platform K1 CO1 [7M] | | | independent. OR K1 CO1 [7M] | ı | | a List the primitive data types available in Java and explain. b Discuss about precedence of operators and associativity. K6 CO1 [7M] | | | UNIT – II a What is inheritance and how does it help to create new classes quickly. K1 CO2 [7M K2 | _ | | OR VI CO2 [6M | 1 | | 4 a Write the benefits of packages and interfaces. b How can we add a class to a package? Write about relative and absolute K1 CO2 [8M] | _ | | paths. | | | UNIT – III a Differentiate between multiprocessing and multithreading. What is to be K4 CO3 [7M] | [] | | done to implement these in a program? b. What is an Exception? How is an Exception handled in JAVA? K1 CO3 [7N] | [] | | that illustrates the application of multiple catch K1 CO3 [8N | 1] | | 6 a Write a java program that mustaces are approximate in statements. b Write about some Java's built-in exceptions. K1 CO3 [6N] | 1] | | UNIT – IV | | | 7 a Explain user interface components in AWT. b Write a program to create a frame window that responds to key strokes. CO4 [8] | - | | What is a Layout manager? Explain different types of Layout managers. K1 CO4 [6] | M]
M] | | UNIT-V | | | 9 a Discuss about different applet display memors in street | M] | | b What are the various components of Swing? Explain. K1 CO3 [7 | M] | | The What is an anniery Exhibiting the Cycle of Applied with a near protection. | M]
M] | # Course Code: 203MC1T01 A , H.T.No: 10 / a What are the Guidelines for success of an interview? A Group Discussion is the creative approach to knowledge-Explain Time: 3 hours ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular & Supplementary (AR20) – MAY 2022 Max. Marks: 70 | BUSINESS COMMUNICATION | |-----------------------------------| | (Master of Computer Applications) | | | _ | Answer ONE question from each unit | | | | |---------|-----------|--|----------------|------------|--------------| | | | All Questions Carry Equal Marks All parts of the questions must be answered at one place only | , | | _ | | | _ | All parts of the questions must be used | | | | | UN
1 | IT –
a | List three situations in your experience, where you would prefer to use | K2 | COI | [7M] | | | b | written communication? With reasons What do you mean by "NOISE" in communication process? | K2 | CO1 | [7M] | | | | OR | ,K1 | CO1 | [7M] | | 2 | a
b | What speakers can do to ensure better listening? Define Communication? What are the purposes of it? | K1 | CO1 | [7M] | | UN | IT - | -II | _V 2 | CO2 | [7M] | | 3 | a | Difference between formal and informal communication | | CO2 | - / - | | | b | What is meant by status-consciousness? How does it impede the smooth flow of communication? | K.3 | CO2 | [7M] | | | | OR | К3 | CO2 | [7M] | | 4 | a | Define Emotion explain the role of emotions in communication | 113 | 002 | [] | | | b | What is Grapevine? Discuss its advantages and disadvantages | K2 | CO2 | [7M] | | UN | IT - | - III | K2 | CO3 | [7M] | | 5 | a | What is Paralanguage? How does silence affect the quality of non-verbal communication? | K3 | CO3 | [7M] | | X | b | Write explanatory notes on body posture and gestures OR | KJ | COS | [/1/1] | | 6 | a
b | Explain the importance of Haptics handshakes, with examples Explain the importance of non-verbal communication in business communication | K3
K3 | CO3
CO3 | [7M]
[7M] | | TIN | тт - | - IV | | ~~. | re) (1 | | 7 | a
b | Distinguish between Minutes and proceedings of a meeting Draft a circular addressing to your customers and dealers announcing the opening of a new branch OR | K2
K3 | CO4
CO4 | [7M]
[7M] | | 8 | a | What is the difference between CV and Resume? What are the points that should kept in mind while preparing Resume? | K3 | CO4 | [7M] | | | b | Draft a Circular letter of credit in favor of the sales manager of your firm M.D.K Ravi Chandra, who is going out on a tour to Northern India | К3 | CO4 | [7M] | | UN | IT - | - V | 1/2 | COS | [7N/I] | | 9 | a
b | Write an exploratory note on appearance and body posture of a speaker? Write the opening paragraph of a formal presentation on the topic" How Extra Circular activities contribute to your personality development | K3
K2 | CO5
CO5 | [7M]
[7M] | | | | OR | 77.1 | CO5 | [7M] | K1 CO5 [7M] K3 CO5 [7M] | | T | TT | T | | Course Code: 203MC1T02 | |---------|---|-----|-----|-----|------------------------| | H.T.No: | | 1 1 | 1 1 | - 1 | | ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular (AR20) – MAY 2022 ## MATHEMATICAL AND STATISTICAL FOUNDATIONS (Master of Computer Applications) Time: 3 hours Max. Marks: 70 ## Answer ONE question from each unit All Questions Carry Equal Marks All parts of the questions must be answered at one place only ### UNIT-I 1 a If the probability density of a random variable is given by. K3 CO1 [7M] $$f(x) = \begin{cases} kx^2 & \text{if } x > 0\\ 0 & \text{if } x < 0 \end{cases}$$ Find the value of k and the probability that the random variable takes on a value between (i) between $\frac{1}{4}$ and $\frac{3}{4}$ (ii) greater than $\frac{2}{3}$. Also, find its mean and variance. b For the continuous random variable X whose probability density function K3 CO1 [7M] is given by $f(x) = \begin{cases} cx(2-x), & for \ 0 \le x \le 2 \\ 0, & otherwise \end{cases}$ Find c and mean and variance of X. #### OR - 2 a Two marbles are drawn in succession from a box containing 10 red, 30 K3 CO1 [7M] white and 15 orange marbles, with replacement being made after each draw. Find the probability that (i) both are white (ii) first is red second is white. - b If the probability density of a random variable is given by K3 CO1 [7M] $f(x) = \begin{cases} k(1-x^2) & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$ Find the value of k and the probability that the random variable takes on a value between i) between $\frac{1}{10}$ and $\frac{2}{10}$ ii) greater than $\frac{1}{2}$. #### UNIT-II - A population consists of five numbers 2,3,6,8 and 11. Consider all possible K3 CO2 [14M] samples of size two which can be drawn with replacement from this population. Find - i) The mean of the population - ii) The standard deviation of the population - iii) The mean of the sampling distribution of means - iv) The standard deviation of the sampling distribution of means. #### OR The tensile strength (1000 psi) of a new composite can be modeled as a K3 CO2 [7M] normal distribution. A random sample of size 25 specimens has mean 45.3 and standard deviation 7.9. Does this information tend to support or refute the claim that the mean of the population is 40.5 4 b A research worker wants to determine the average time it takes a mechanic to rotate the tires of a car, and she wants to be able to assert with 95% confidence that the mean of her sample is off by at most 0.50 minute. If she can presume from past experience that $\sigma = 1.6$ minutes, how large a sample will she have to take. K3 CO2 [7M] #### UNIT - III The dynamic modulus of concrete is obtained for two different concrete mixes. For the first mix, $n_1 = 33$, $\bar{x} = 115.1$ and $s_1 = 0.47$ psi. For the second mix, $n_2 = 31$, $\bar{y} = 114.6$ and $s_2 = 0.38$. Test with $\alpha = 0.05$, the null hypothesis of equality of mean dynamic modulus versus the two-sided alternative. Also construct a 95% confidence interval
of the difference in mean dynamic modulus. b The following random samples are measurements of the heat-producing capacity (in millions of calories per ton) of specimens of coal from two mines: | K3 | CO3 | [7M] | |----|-----|------| | K3 | CO3 | [/M] | CO3 [7M] | 10. | 22.41 | | · | | | | |----------|-------|------|------|------|------|------| | Mine - 1 | 8260 | 8130 | 8350 | 8070 | 8340 | | | Mine - 2 | 7950 | 7890 | 7900 | 8140 | 7920 | 7840 | Construct a 99% confidence interval for the difference between means. #### OR 6 a To compare two kinds of bumper guards, 6 of each kind, were mounted on K3 CO3 [7M] a certain kind of compact car. Then each car was run into a concrete wall at 5 miles per hour and the following are the costs of the repairs (in rupees) Bumper Guard 1 407 448 423 465 402 419 Bumper Guard 2 434 415 412 451 433 429 Use the 0.01 level of significance to test whether the difference between two sample means is significant. Measuring specimens of nylon yarn taken from two spinning machines, it was found that 8 specimens from the first machine had a mean denier of 9.67 with a standard deviation of 1.81 while 10 specimens from the second machine had a mean denier of 7.43 with a standard deviation of 1.48. Assuming that the populations sampled are normal and have the same variance, test the null hypothesis μ_1 - μ_2 =1.5 against the alternative hypothesis μ_1 - μ_2 > 1.5 at the 0.05 level of significance. K3 CO3 [7M] #### UNIT-IV 7 a Prove that a group G is abelian iff $(a * b)^2 = a^2 * b^2$. K3 CO4 [7M] Determine whether $H_1 = \{0, 5, 10\}$ and $H_2 = \{0, 4, 8, 12\}$ are subgroups of $(Z_{15}, +_{15})$ K3 CO4 [7M - OR - 8 a Find G. C. D(615, 1080), and find integers u and v such that G. C. D(615, 1080) = 615u + 1080v. K3 CO4 [8M] b Use the definition of addition and multiplication in Z_m to find 7 + 11 9 and 7 · 11 9. K3 CO4 [6M] Page 3 of 3 H.T.No: 21 A91 F0075 Course Code: 203MC1T03 ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular & Supplementary (AR20) – May 2022 ## COMPUTER ORGANIZATION AND OPERATING SYSTEMS (Master of Computer Applications) Time: 3 hours Max. Marks: 70 Answer ONE question-from each unit - All Questions Carry Equal Marks All parts of the questions must be answered at one place only | IJ | NIT | -T | | * | | |----|--------|---|----------|------------|--------------| | 1 | | | K2 | CO1 | •[7M] | | | b | | K2 | CO1 | [7M] | | 2 | a
b | Explain about Memory locations and addresses in detail. Explain about Instructions and Instruction sequencing in detail. | K2
K2 | CO1 | [7M]
[7M] | | TI | NIT | _ Π | | | | | 3 | a | Explain about Performing an Arithmetic or Logic Operation. | K2 | CO2 | [7M] | | | b | Explain about Micro Programmed Control. OR | K2 | CO2 | [7M] | | 4 | а | How do you fetch a word from memory? Explain in detail with an example. | K2 | CO2 | [7M] | | | b | Explain Micro program sequencing. | K2 | CO2 | [7M] | | U | ·TIV | - III | | | | | 5 | a | Explain about types of system calls in Operating Systems. | K2 | CO3 | [7M] | | | b | Explain about FCFS CPU Scheduling Algorithm in detail. OR | K2 | CO3 | [7M] | | 6 | a | Explain about Operating Systems Structures. | K2 | CO3 | [7M] | | | b | Explain about Process Scheduling in detail. | K2 | CO3 | [7M] | | UN | ΠT- | - IV | | | | | 7 | a
b | Explain about the critical-section problem with an example. Explain about Recovery Starvation in detail. OR | K2
K2 | CO4
CO4 | [7M]
[7M] | | 8 | a | Explain about Peterson's Solution with an example. | K2 | CO4 | [7M] | | | b | Explain about Detection and Avoidance. | K2 | CO4 | [7M] | | UN | IT – | v | | | | | 9 | a | Explain about LRU and MFU Page-Replacement Algorithms in detail. | K2 | CO5 | [7M] | | | b | Explain about Disk Scheduling in detail. | K2 | CO5 | [7M] | | | | OR | 112 | | [] | | 10 | a | Explain about Paging concept in detail with an example. | K2 | CO5 | [7M] | | | b . | Explain in detail about File-System implementation | K2 | | [7M] | H.T.No: 2 Course Code: 203MC1T04 # ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular & Supple (AR20) – MAY 2022 ## DATA STRUCTURES (Master of Computer Applications) | | | (Master of Computer Applications) | | | | |----|--------|--|-------------|------------|---------------| | | | Time: 5 nours Max. | Marks | : 70 | | | | | Answer ONE question from each unit | | | , | | | | All Questions Carry Equal Marks | | | | | | | All parts of the questions must be answered at one place on | y | | | | T | רוא | ∑ – I | | | | | 1 | | • | e K2 | COI | [8M] | | | t | Explain about different types of branching statements in C OR | K2 | CO1 | [6M] | | 2 | b | Write a C program for to find a sum of series 1! +2! +3! ++n! | K2
K2 | CO1
CO1 | [7M]
[7M] | | U. | TIN | '-II | | | | | 3 | a
b | What is pointer? What are the features of pointers? Write a C program t print address of variable and data with pointer. | K2
o K2 | | [6M]
[8M] | | 4 | | OR Explain different types of file handling functions in C with example | K2 | CO2 | [14M] | | Ul | TI | -III | | | | | 5 | a | Discuss single linked list and doubly linked list | К2 | CO3 | [7].(] | | | b | How circular linked list is organized. Discuss its operations OR | K2
K2 | CO3 | [7M]
[7M] | | 6 | a
b | Explain the types of data structures in detail What is recursion discuss types recursion with an example. | K2
K2 | CO3
CO3 | [9M]
[5M] | | UN | IIT. | -IV | | | | | 7 | • | What is hash function? Explain collision resolution methods of the hashing OR | K2 | CO5 | [14M] | | 8 | a
b | Write the program to implement Push and Pop operation in the stack Discuss array and linked list representation of queue. | K2
K2 | CO5 | [7M]
[7M] | | UN | ΙT - | - V | | | | | 9 | ~ ~ | Write a program to implement selection sort and calculate its complexit with example | y K2 | CO4 | [14M] | | 10 | | OR | | | | | 10 | a
b | What is BST? Explain the operations of BST. Construct Binary Search Tree for following elements 47, 12, 75, 88, 90, 73 57, 1, 85, 50, 62 apply inorder, preorder, postorder traversal. | K2
8, K2 | CO4
CO5 | [4M]
[10M] | H.T.No: 2 1 Course Code: 203MC1T05 ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular & Supple (AR20) – MAY 2022 ## OBJECT ORIENTED PROGRAMMING WITH JAVA Time: 3 hours Max. Marks: 70 > Answer ONE question from each unit All Questions Carry Equal Marks (5 x 14 = 70M) All parts of the questions must be answered at one place only | TIT | NIT - | - T | | | | |------|--------|---|----------|------------|--------------| | 1 | a | | K2 | CO1 | [7M] | | | b | What is the purpose of constructor in Java programming? OR | K2 | CO1 | [7M] | | 2 | a
b | Describe the structure of a typical Java program with an example. What is an array? How do you declare the array in java? Give examples. | K3
K2 | CO1 | [7M]
[7M] | | UI | NIT - | - π | | | | | 3 | a | Define inheritance. What are the benefits of inheritance? How to prevent a class from inheritance? | K2 | CO2 | [7M] | | | ь | What is polymorphism? Explain different types of polymorphisms with examples. | K2 | CO2 | [7M] | | | | OR | | | | | 4 | a
b | Write a programme to demonstrate all the uses of keyword super.
Give an example where interface can be used to support multiple inheritance. | K3
K3 | CO2
CO2 | [7M]
[7M] | | ** | ATT TO | , | | | | | 5 | NIT · | - III Write a program with nested try statements for handling exception. | K3 | CO3 | [7M] | | , | b | Write a program to create four threads using Runnable interface. OR | K3 | CO3 | [7M] | | 6 | a
b | Explain different blocks associated with exception handling. With an example, demonstrate the concept of user defined packages. | K2
K3 | CO3
CO3 | [7M] | | *17 | VIT - | TX7 | | | | | 7 | a
b | List and explain different types of Layout managers with suitable examples. Explain in detail Adapter classes, inner classes with appropriate example. | K2
K2 | CO4
CO4 | [7M] | | | U | OR | | COT | [/141] | | 8 | a | Explain AWT class hierarchy. | K2 | CO4 | [7M] | | | b | Illustrate the use of Grid Bag layout. | K3 | CO4 | [7M] | | יונד | - TIV | - V | | | | | 9 | a | What is the difference between init() and start () methods in an Applet? When will each be executed? | K2 | CO5 | [7M | | | b | Write the applets to draw the Cube and Circle shapes. OR | K3 | CO5 | [7M | | 10 | a
b | How to move/drag a component placed in Swing Container? Explain. Write the applets to draw the Cube and Cylinder shapes. | K2
K3 | CO5
CO5 | [7M] | H.T.No: Course Code: 203MC1T03 ## TYA ENGINEERING COLLEGE (A) MCA - I Semester End Examination Regular & Supplementary (AR20) - Feb 2023 ## COMPUTER ORGANIZATION & OPERATING SYSTEMS Max. Marks: 70 Time: 3 hours > Answer ONE question from each unit All Questions Carry Equal Marks (5 x 14 = 70M) All parts of the questions must be answered at one place only | UN
1 | NIT -
a
b | Explain about Bus Structure with neat diagram. Explain about basic functional units with examples. | - | CO1 | [7M]
[7M] | |----------------|-----------------|--|----------|------------|--------------| | 2 | a | OR Define Assembler. Write any five assembly language instructions with | K1 | CO1 | [7M] | | | b | examples. Explain about direct and indirect addressing modes. | K2 | CO1 |
[7M] | | _ | - TI | - II | К3 | CO2 | [7M] | | 3 | a | Define Register. Explain about simple and conditional register transfer operations. | | CO2 | [7M] | | | þ | Explain about the organization of a micro programmed control unit. OR | | | | | 4 | a | What are the differences between single bus organization and multiple bus organization? | | | [7M] | | | b | Define Micro-Programming. Explain advantages of Micro-Programming. | K1 | CO2 | [7M] | | UN
5 | VIT - | - III Define Operating System. Explain about Batch Processing operating | K2 | CO3 | [7M] | | | b | systems. Define System Call. Explain about pipe() and fork() system calls. OR | | | [7M] | | 6 | a
b | Explain about processes states with neat diagram. Explain about Round-Robin Scheduling with example. | K2
K3 | CO3 | [7M]
[7M] | | UN
7 | NIT -
g
b | Write about Critical Section problem with example. Explain about Dining Philosophers problem from Classic Problems of Synchronization | K2
K2 | CO4
CO4 | [7M]
[7M] | | 8 | a
b | OR Explain about Resource allocation graph with diagram. Define Deadlock. Explain about deadlock prevention. | K2
K2 | CO4
CO4 | [7M]
[7M] | | _ | NIT - | - V Define Paging. Explain about structure of page table. Explain about LRU page replacement algorithm with example OR | K2
K3 | CO5 | [7M]
[7M] | | 10 | a
b | Explain about SCAN disk scheduling algorithm. Explain about contiguous file allocation method with example. | K2
K2 | CO6 | [7M]
[7M] | **** | H.T.No: | Course Code: 203MC1T04 | |---------|------------------------| |---------|------------------------| ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular & Supplementary (AR20) – Feb 2023 | | Ţ | | . Mark | s: 70 | _ | |-----|----------|---|--------|-------|------------| | | | Answer ONE question from each unit
All Questions Carry Equal Marks (5 x 14 = 70M)
All parts of the questions must be answered at one place or | ıly | | | | IN | - TI | | • | | - | | l | a - | Explain about formatted and unformatted input and output function available in C language. Also explain different output format modifiers i C language. | s K2 | COI | [8M | | | b | Write a C program to convert the given years into number of months and days. | K2 | COI | [6M | | | | OR | | | | | | a | Explain about switch statement. What is the importance of break an continue in switch statement? Give examples. | | | [7N | | | þ | What is an array? How to initialize, accessing, and print the arra elements? | y K2 | CO1 | [7N | | ı | IT – | TT | | | | | ,1, | a | Explain the arithmetic operations on pointers with example. | · V2 | CO2 | [7] | | | b | Explain in detail about array of structure and pointer to structure wit example. | h K3 | CO2 | [7N
[7N | | | | OR | | | | | | a | Explain about call by value and call by reference with reference t functions. Write a function to swap the values between the variable using call by value and call by reference. | o K3 | CO2 | [8N | | | 6 | Explain how to access the elements of a union with an example. | K3 | CO2 | [6N | | JN | HT - | | | | | | | | Explain the advantages and disadvantages of the recursive algorithm compared to non-recursive algorithms. | is K3 | CO3 | [6N | | | Þ | Write an algorithm to perform deletion operation on doubly linked list. OR | K3 | | [8] | | • | a | position and at the end of a Singly Linked List. | | | - | | | Ь | What is binary search? Explain binary search with algorithm at example. | nd K3 | CO3 | [71 | #### UNIT - IV - Discuss infix to prefix conversion algorithm using stack with an example. K3 CO4 [8M] Define hashing, hash functions and hash table along with a labelled K3 CO4 [6M] diagram. - a Explain the procedure to evaluate postfix expression using stack. K3 CO4 [8M] Evaluate the following Postfix expression 7 3 4 + 2 4 5 / + * 6 / 7 +. b Explain various operations that are performed on queue with suitable K3 CO4 [6M] algorithms. ## UNIT - V - 9 a Sketch the binary search tree resulting after inserting the following K4 CO5 [7M] integer keys 49, 27, 12, 11, 33, 77, 26, 56, 23, 6. i) Check whether the tree is almost complete. - i) Check whether the tree is almost complete or not?ii) Determine the height of the tree - b Explain the working of merge sort on the following K4 CO5 [7M] data: 12, 25, 5,9, 1, 84, 63, 7, 15, 4, 3. Show all intermediate steps. Also, mention its time complexity. - OR What is a binary tree? Construct a binary tree given the pre-order K4 CO5 [7M] Pre-Order Traversal: GBQACKFPDERH In-Order Traversal: QBKCFAGPEDHR - In-Order Traversal: QBKCFAGPEDHR b Arrange the following list of elements in ascending order using selection K4 CO5 [7M] sort: 9, 3, 5, 27, 4, 67, 18, 31, 13, 20, 39, 21. Clearly show all intermediate steps. Also, mention its time complexity. 14 H.T.No: 22 A 9 1 F 0 0 55 Time: 3 hours Course Code: 203MC1T05 Max. Marks: 70 ## ADITYA ENGINEERING COLLEGE (A) MCA - I Semester End Examination Regular & Supplementary (AR20) - Feb 2023 ## OBJECT ORIENTED PROGRAMMING WITH JAVA (Master of Computer Applications) | | | Answer ONE question from each unit
All Questions Carry Equal Marks
All parts of the questions must be answered at one place only | | | 44 | |-----|--------|--|----------|------------|--------------| | Uľ | - TIV | - Ĭ | | | | | 1 | | Illustrate the concept of Recursion using a simple java program. Explain the Concept of Scope and Life time of a variable with a sample Java Program | K2
K2 | COI
COI | [8M]
[7M] | | | | OR | | 001 | (A) (I | | 2 | a
b | Explain various features of Java? Discuss in brief about inbuilt String methods mentioned below with an example each. charAt(), length(), indexOf(), toUpperCase() | | CO1
CO2 | [6M]
[8M] | | TIN | NIT - | TT | | | 4. | | 3 | a | Demonstrate how Constructors Concept can be implemented with a sample java Program. | K2 | CO2 | [7M] | | | b | Explain Multi-level Inheritance in detail and Demonstrate the same using a Java Program. OR | K3 | CO2 | [7M] | | 4 | 2 | Demonstrate Various Types of Inheritances with Suitable Example | K2 | CO2 | [7M] | | Т | b | Define a Package and explain the process of creating & accessing a package using a program. | K3 | CO3 | [6M] | | TIN | VIT – | - 111 | | | | | 5 | a
b | Give a brief description about presumptive models. Illustrate briefly about Try, Catch, Throw and Finally blocks and demonstrate the same using a simple java Program | K2
K2 | CO4
CO4 | [6M]
[8M] | | | | OR | | | | | 5 | a | Compare and Contrast Multi-tasking and multi-threading | K2 | CO4 | [6M] | | | Ь | Demonstrate Thread Synchronization and Write a Java Program for the Same. | K2 | CO4 | [8M] | | TIN | IIT – | IV | | | | | 7 | 9 | Write Short notes on Events, Event Listeners Explain the functionalities of user interface components with an example | K1
K2 | | [6M]
[8M] | | | ~ | each. | | | | | 0 | | OR Illustrate in brief about AWT Class Hierarchy | K2 | CO5 | [6M] | | 8 | a
b | Demonstrate about Layout Manager types: boarder, grid and flow with a simple Java Program | K2 | CO5 | [8M] | | | | - | | | | (P.T.O) | UNIT
9 a
b | Write short notes on JFrame and JComponent, cons and Labels Demonstrate an Applet program that describes the functionality of | CO6 | | |------------------|--|---------|------| | | OR |
CO6 | [7M] | and a H.T.No: 2 2 A 9 1 F 0 0 8 5 Course Code: 203MC1T01 ## ADITYA ENGINEERING COLLEGE (A) · MCA - I Semester End Examinations Regular & Supplementary (AR20) - Feb 2023 ### **BUSINES COMMUNICATION** | Time: 3 hours | , | Max. Marks: 70 | |---------------|-----------------------------------|----------------| | | THE RESERVE AND PERSONS ASSESSED. | | Answer ONE question from each unit All Questions Carry Equal Marks (5 x 14 = 70M) All parts of the questions must be answered at one place only | | | T-I a Define communication? What is the purpose of business communication? | K1 | COI | [7M] | |-----|---------
--|----------|------------|--------------| | | | b Define communication? State the objectives of communications. | K2 | CO1 | [7M] | | . 2 | | OR a Discuss the process of communication and its important elements? b What are the types of listening skills? | K2
K1 | COI
COI | [7M]
[7M] | | τ | JNI | $\Gamma - \Pi$ | | | | | 3 | | a Give examples of internal communication? b Differentiate between interpersonal communication and intrapersonal communication? | K2
K2 | CO2
CO2 | [7M]
[7M] | | | | OR | | | | | 4 | | Discuss the psychological barriers to effective communication? Explain the exchange theory? | K2
K2 | CO2
CO2 | [7M]
[7M] | | U | NIT | $\Gamma - III$ | | | | | 5 | b | What are the characteristics of non verbal communication? | K2
K2 | CO3 | [7M]
[7M] | | 6 | a | The state of s | K2 | CO3 | [7M] | | | b | Describe in brief the strategies to deal with loaded and open questions? | K2 | CO3 | [7M] | | III | VIT | -IV | | ć | | | 7 | a | What is the importance of resume in today's times? What are the principles should be followed in making a resume attractive? | K2 | CO4 | [7M] | | | b | Discuss the meeting and oral presentation? OR | K2 | CO4 | [7M] | | 8 | a | What are the formal and informal reports? | K2
K2 | CO4
CO4 | [7M]
[7M] | | | b | Draft a letter communicating the declaration of dividend to the share holders of the company? | 112 | 001 | [///] | | YIN | TTT | V/ | | | | | 9 | IT
a | Discuss the principles of oral presentations. What are the desirable | K2 | CO5 | [7M] | | | b | presentation skills while making presentations? Describe various strategies of assertive behavior? | K2 | CO5 | [7M] | | | | OR | K2 | CO5 | [7M] | | 10 | a | Effective presentation on any chosen topic calls for effective skills? What are these skills and important considerations while making presentations? | | | • | | | b | Briefly explain communication skills for group discussion? | K2 | CO5 | [VIVI] | H.T.No: 22A91F0055 Course Code: 203MC1T02 ## ADITYA ENGINEERING COLLEGE (A) MCA - I Semester End Examination Regular & Supplementary (AR20) - Feb 2023 ## MATHEMATICAL AND STATISTICAL FOUNDATIONS (Master of Computer Applications) Time: 3 hours Max. Marks: 70 ## Answer ONE question from each unit All Questions Carry Equal Marks All parts of the questions must be answered at one place only ## UNIT - I - a Suppose 3% of the people on the average are left-handed. Find K3 CO1 [7M] i) the probability of finding at most one left handed ii) the probability of finding at least one left handed - b If the probability density of a random variable is given by K3 CO1 [7M] $f(x) = \begin{cases} x & \text{if } 0 < x < 1, \\ 2 x & \text{if } 1 \le x < 2, \text{ Find the probabilities that the random} \\ 0 & \text{elsewhere.} \end{cases}$ variable will take on a value i) between 0.2 and 0.8; ii) between 0.6 and 1.2; iii) greater than 1.8. ### OR - a A class has 10 boys and 5 girls. Three students are selected at random K3 CO1 [7M] one after another. Find the probability that i) first two are boys and third is girl ii) First and third are of same sex and the second is of opposite sex. - b Verify the given function is probability density function or not, If a K3 CO1 [7M] random variable has the probability density $f(x) = \begin{cases} 2e^{-2x} & for \ x > 0 \\ 0 & for \ x \le 0 \end{cases}$ Find the probabilities that it will take on a value i) between 1 and 3 ii) greater than 0.5 iii) less than or equal to 1. ### UNIT-II - 3 a A sample of 400 items is taken from a population whose standard K3 CO2 [7M] deviation is 10. The mean of the sample is 40. Test whether the sample has come from a population with mean 38. Also, Calculate 95% confidence interval for the population. - b In six determinations of the melting point of tin, a chemist obtained a K3 CO2 [7M] mean of 232.26 degrees Celsius with a standard deviation of 0.14 degree. If he uses this mean to estimate the actual melting point of tin, what can the chemist assert with 98% confidence about the maximum error. #### OR A population consists of six numbers 4,8,12,16,20 and 24. Consider all K3 CO2 [14M] possible samples of size two which can be drawn without replacement from this population. Find i) The mean of the population ii) The standard deviation of the population iii) The mean of the sampling distribution of means iv) The standard deviation of the sampling distribution of means. ### UNIT - III A company claims that its light bulbs are superior to those of its main competitor. If a study showed that a sample of $n_1 = 40$ of its bulbs has a mean lifetime of 1647 hours of continuous use with a standard deviation of 27 hours, while a sample of $n_2 = 40$ bulbs made by its main competitor has a mean lifetime of 1638 hours of continuous use with a standard deviation of 31 hours, does this substantiate the claim at the 0.05 level of significance? As a part of an industrial training program, some trainees are instructed by method A, which is straight computer-based instruction, and some are instructed by method B, which also involves personal attention of an instructor. If random samples of size 10 are taken from large groups of trainees instructed by each of the two methods, and the scores which they obtained in an appropriate achievements test are | Method A | 71 | 75 | 65 | 69 | 73 | 66 | 68 | 71 | 74 | 68 | |----------|----|----|----|----|----|----|----|----|----|----| | Method B | 72 | 77 | 84 | 78 | 69 | 70 | 77 | 73 | 65 | 75 | Use the 0.05 level of significance to test the claim that method B is more effective. Assume that the populations sampled can be approximated closely with normal distributions having the same variance. #### OR 6 a The following random samples are measurements of the heat-producing K3 CO3 [7M] capacity (in millions of calories per ton) of specimens of coal from two mines: | Mine - 1 | 8260 | 8130 | 8350 | 8070 | 8340 | | |----------|------|------|------|------|------|------| | Mine - 2 | 7950 | 7890 | 7900 | 8140 | 7920 | 7840 | Use the 0.01 level of significance to test whether the difference between the means of these two samples is significant. The following are the average weekly losses of worker-hours due to K3 CO3 [7M] accidents in 10 industrial plants before and after a certain safety program was put into operation: | Before | 45 | 73 | 46 | 124 | 33 | 57 | 83 | 34 | 26 | 17 | |--------|----|----|----|-----|----|----|----|----|----|----| | After | 36 | | 44 | | 35 | 51 | 77 | 29 | 24 | 11 | Use the 0.05 level of significance to test whether the safety program is effective. Also construct a 90% confidence interval for the men improvement in lost worker-hours. ### UNIT-IV 7 Show that (Z,*) is a group where * is defined as a*b=a+b+1. K3 CO4 [7M] K3 CO3 [7M] CO3 [7M] b Give an example that the union of two subgroups need not be a subgroup. K3 CO4 [7M] OR 8 a Use the prime factorization to find the G.C.D and L.C.M of 119 and 544. K3 CO4 [8M] b Define congruence relation between two integers a and b. Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6. K3 CO4 [6M] UNIT - V 9 a Show that C_6 is bipartite graph. b Verify the following graphs have an Eulerian circuit or not. K3 CO5 [7M] K3 CO5 [7M] OR CO5 [7M] Prove that the graph $K_{3,-3}$ is not a planar graph. Give an example of a graph which is Hamiltonian but not Eulerian. K3 CO5 [7M] ## MCA I Semester Regular Examinations, July-2021 ## **Data Structures** Time: 3 Hours Max. Marks: 70 | | | Max. Mar | ks: 70 | |----|-----|--|--------| | | | Answer any FIVE Questions One Question From Each Unit | | | | | All Questions Carry Equal Marks | | | | | UNIT-I | | | 1 | | Write an algorithm and flowchart to compute roots of quadratic equation | 7M | | | b | bettine a data type. Mention the different data types supported by C language giving
| 7M | | | | an example to each. | | | - | | OR | | | 2. | - 3 | Stripme and contrast between it-else and switch -case statements | 7M | | | ь | Write a program to compute roots of quadratic equation using switch-case | 7M | | | | statement | | | 3. | | UNIT-II | 7M | | 3 | 4 | Develop a C program to read two number and a function to swap these number | 1301 | | | h | Using pointers | 7M | | | U | How to pass arrays as parameters to functions? Explain with an example | 1.00 | | 4. | а | What is a pointer? Explain dynamic memory management | 7M | | | ь | | 7M | | | 100 | UNIT-III | | | 5. | a | | 7M | | | b | | 7M | | | | OR | | | 6. | 11 | Write an algorithm to delete an element from doubly linked list. | 7M | | | Ь | Compare singly and circular linked list while performing insertion and deletion | 7M | | | | operations. | | | | | UNIT-IV | 1000 | | 7. | 11 | Discuss Briefly about linear probing, quadratic probing with example | 10M | | | b | Illustrate the difference between stack and queue | 4M | | | | OR | 711 | | 8. | a | Write an algorithm for basic operations of stack | 7M | | | b | Write an algorithm to push and pop an element from linked stack. | 7M | | | | UNIT-V | 73.1 | | 9 | 3 | Create binary search tree for the following elements (23, 12, 45, 36, 5, 15, 39, 2, | 7M | | | | 19). Discuss about the height of the above binary search tree | 71.1 | | | b | What is a binary search tree? Write an algorithm for inserting and deleting a node | 7 M | | | | in a binary search tree. | | | | | OR AND | 75.6 | | 10 | a | A binary tree has seven nodes. The Preorder and Post order traversal of the tree are | 7M | | | | given below. Can you draw the tree? Justify | | | | | Preorder GFDABEC | | | | | Post order ABDCEFG | **** | | | b | Explain the iterative merge sort and recursive merge sort algorithms with an | 7M | | | | example. | | | | | | | Course Code: 203MC1T04 ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular & Supple (AR20) – MAY 2022 ### DATA STRUCTURES (Master of Computer Applications) Time: 3 hours Max. Marks: 70 Answer ONE question from each unit All Questions Carry Equal Marks All parts of the questions must be answered at one place only | UN | TIV | -1 | v2 | CO1 | [8M] | |-----|------|--|--------|-----|--------------| | 1 | a | What is a variable? What are the rules for declaring variables? Give | NZ. | Co. | | | | | examples for valid and invalid variables? | K2 | CO1 | [6M] | | | b | Explain about different types of branching statements in C | | - | (73.41 | | - | | OR | K2 | COI | [7M]
[7M] | | 2 | a | Write a C program for to find a sum of series 1! +2! +3! ++n! Describe while and do-while loop with example each. | K2 | COI | Livij | | | b | Describe withe and do-winte loop with example | | | | | UN | TIV | - II | K2 | CO2 | [6M] | | 3 | a | Summarize the declaration and initialization of structure with an example | K2 | CO2 | [8M] | | | b | What is pointer? What are the features of pointers. | | | | | | | print address of variable and data with pointer. | 110 | CO2 | [14M] | | | | Explain different types of file handling functions in C with example | KZ. | 002 | Lances | | 4 | | Explain different types of the | | | | | TIN | лт | - III | K2 | CO3 | [7M] | | 5 | a | Diamos single linked list and doubly linked list | K2 | CO3 | [7M] | | | b | How circular linked list is organized. Discuss its operations | | | | | | | OK. | K2 | CO3 | [9M] | | 6 | a | Explain the types of data structures in detail What is recursion discuss types recursion with an example. | K2 | CO3 | [5M] | | | b | What is recursion discuss types recursion | | | | | 118 | mr | - IV | K2 | COS | [14M] | | 7 | VII. | What is hash function? Explain contision resolution | 1.4.0. | | | | , | | | K2 | CO5 | [7M] | | 8 | a | Write the program to implement Push and Pop operation in the stack | K2 | CO5 | [7M] | | | Ь | Discuss array and linked list representation of queue. | | | | | *** | III. | V | V2 | 004 | [14M] | | 9 | VII. | V Write a program to implement selection sort and calculate its complexity | K2 | C04 | [14141] | | 2 | | with example | | | | | | | OR . | K2 | CO4 | [4M] | | 10 | a | What is BST? Explain the operations of BST Construct Binary Search Tree for following elements 47, 12, 75, 88, 90, 73, | | CO5 | [10M] | | | b | Construct Binary Search Tree for following centering 47, 12, 55, 50, 62 apply inorder, preorder, posterder traversal. | | | 2 11 | | | | 57, 1, 85, 50, 62 apply morder, presider, presider, | | | | | | | | | | | | H.T.No: | Course Code: 203MC1T04 | |-----------|------------------------| | 11.1.0.40 | | ## ADITYA ENGINEERING COLLEGE (A) MCA – I Semester End Examinations Regular (AR20) – AUG 2021 ## DATA STRUCTURES Max. Marks: 70 | | Time: 3 hours | | | | |-------|--|----------|-----|--------------| | | Answer ONE question from each unit All Questions Carry Equal Marks (5 x 14 = 70M) All parts of the questions must be answered at one place only | | | | | | | | | | | UNI | Explain arithmetic, logical and bitwise operators with examples. | K2
K2 | | [6M]
[8M] | | 2 | OR OR Discuss about their usage. | K2 | COI | [6M] | | | Distinguish between them. Write a program to demonstrate passing an array argument to a function. Consider the problem of finding largest of N numbers defined in an | K2 | COI | [8M] | | | array. | | | | | UNI | `-II | W2 | con | [7M] | | 10000 | Explain function prototype and explain different methods to call the | K3 | CO2 | final | | | functions. Define a structure. Describe how to declare and initialize structure and its members with an example. | K3 | CO2 | [7M] | | - | OR | V3 | CO2 | [6M] | | X | function is declared and what are the rules followed to call a function. | | | [8M] | | 1 | Explain about the repent, recess, 1994, p | | | | | UNI | -111 | | 001 | fm 12 | | 5 | anywhere in the single linked list. | | | | | 1 | to the state of th | K3 | CO3 | [6M] | | | OR | | | | | 6/1 | Explain the advantages and disadvantages of the recursive algorithms compared to non-recursive algorithms. | | | [6M] | | ł | ver to to the house Classical linked list and doubly linked list | K3 | CO3 | [8M] | | UNIT | -IV | | | | | 7 a | Convert given Infix expression: (a + b * c ^ d) * (e + f / g) to Postfix expression using Stack and show the details of Stack at each step of conversion. (Note: ^ indicates exponent operator) | K3 | CO4 | [7M] | | b | | К3 | CO4 | [7M] | | | | | (P | (O.T. | Code No: MC2014/R20 ## MCA I Semester Regular/Supplementary Examinations, May-2022 Max. Marks: 70 ## DATA STRUCTURES Time: 3 Hours Answer any FIVE Questions One Question From Each Unit All Questions Carry Equal Marks #### 734 1. a How the Precedence and Associativity rules of operators help in executing a 'C' expression? What is the output of the following C code? Give Explanation. #include <stdio.h> int main() int h = 7; int b = 3 * 5 + 2 * 3 < h*4 73 2 printf("%d", b); b. Give the syntax of various Loop control statements supported by C. Explain their return 0; 7M execution behavior with neat flowcharts Write a C program to display the sum of the series 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/10TM b Explain the memory allocation strategies for various types of arrays supported by C 7M programming with neat diagrams. 7M UNIT-II Explain the concept of structures and unions with suitable examples. 7M b Distinguish between char *S and char S [] with a sample C program. Write a C program to add two distances given as input in feet and inches using TM Give the syntax for opening files in C programming. Explain various modes of 7M opening files with an example C program. 5. a How to measure the complexity of an algorithm? Briefly discuss various notations UNIT-III 6M What are the advantages of Circular Linked lists over other types of linked
lists? SM Depict the insert, delete and search operations on Circular Linked lists with neat diagrams a. Why selecting appropriate data structure is so important in computer applications? **6M** Elaborate on the classification of data structures. b With neat diagrams, explain the Insert and Delete operations in Doubly Linked List 8M data structure ## Code No: MC2014/R20 | 1 | 7. a Describe the five basic operation. UNIT-IV | | |----|---|----------| | | a Describe the five basic operations which can be performed on Stack data structure b Consider a Hash seld. | 7M | | | Consider a Hash table of size 7 with hash function is h(k) = k % m. Insert the following elements [99,71,18,15,12,81] into a Hash table and use Quadratic probing | 7M | | 3. | | | | | a List and explain any four significant applications of Queue data structure in b What are the stories | 6M | | | b What are the significant advantages of Extendible hashing over Static hashing example. Explain the concept of Extendible hashing technique with an | 8M | | | | | | | Explain the principle of Quick Sort algorithm with an example. Show the resulting Binary Search Tree after inserting the elements 1, 4, 7, 10, 17, 21, 31, 25, 19, 20, 28, 42 in order into an empty tree. | 7M
7M | | a | | | | , | How many passes are required to sort the following list of elements 24, 98,29,24,77. Explain in detail years. | 7M | | | Explain in detail various tree traversals techniques. Discuss their applications. | | | | essas apprecions | 7M | 10.